
~. -W - -

AD___

TECHNICAL REPOR'r
GIT-ICS-81/15

A SIMULATION TOOL FOR DISTRIBUTED DATABASES

By

o • Nancy r- Griffeth E T E
S• •E~LECTE -

DEC 2 31981
Prepared for

Q1 OFFICE OF NAVAL RESEARCH E
800 N. QUINCY STREET
ARLINGTON, VIRGINIA 22217 f?

Under

Contract No, N00014-79-C-0873 I
GIT Project No. G36-643

September 1981 c' C)

_ GEORGIA INSTITUTE OF TECHNOLOGY
LA UNIT OF THE UNIVERSITY SYSTEM OF GEORGIA

S SCHOOL OF INFORMATION AND COMPUTER SCIENCE - _
ATLANTA, GEORGIA 30332

IThis. dociument has been approved
lot pubihc mlemw cd azi INl
ftributc= I@ 1U)indtsd. -A

81 12 23 086

THE RESEARCH PROGRAM IN
FULLY DISTRIBUTED PROCESSING SYSTEMS

.. .1

A SIMULATION TOOL FOR DISTRIBUTED DATABASE SYSTEMS

TECHNICAL REPORT

GIT-ICS-81/15

Accession ForNTIS GRA&3:1_

DTI, TAB

Ja•st i f J •' "
Nancy D. Griffeth Jy L

By~ -DiStT ill`

November, 1981 q 0."

Office of Naval Research
800 N. Quincy Street

Arlington, Virginia 22217

Contract No. N00014-79-C-0873
GIT Project No. G36-64'3

The Georgia Tech Research Program in
Fully Distributed Processirg Systems

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, Georgia 30332

-t

THE VIEW, OPINIONS, AND/OR FINDINGS CONTAINED IN THIS REPORT ARE THOSE OF
THE AUTHORS AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL DEPARTMENT OF THE4
NAVY POSITION, POLICY, OR DECISION, UNLESS SO DESIGNATED BY OTHER
DOCUMENTATION.

Georgia Institute of' Technology Simulation Tool for Distributed Databases

•!1 _.Unclagaif ied

SECURITY CLASSIFICATION OF THIS PAGE (l•het Date Entered)

REPORT DOCUMENTATION PAGE RE INSTRUCTINO2! BEFORE COMPL ETING FORM

1. 'RqEP1ORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

GIT-ICS-81/15 -

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

¢ Technical Report
A Simulation Tool for Distributed Database TcilRo
Systems 918\• Sytems6. PERFORMING ONIG. REP RT NUMBER

GIT-ICS-8111 7
7. AUTHOR(s) 0. CONTRACT OR GRANr NUMBER()

Nancy D. Griffeth NOD014 -79-C-0873

9. PERFORMING ORGANIZATION NAME AND ADDRESS , PROGRAM ELEMENT, PROJECT, TASK

School of Information and Computer Science AREA & WORK UNIT NUMBERS

Georgia Institute of Technology
Atlanta, Georgia 30332

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research 9/1/81
800 N. Quincy Street 13. NUMBER OF PAGES

Arlington, Virginia 22217 24 + vi
14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) 1S. SECURITY CLASS. (of this report)

Unclassified
same

15a. OECLASSIFICATION'DOWNGRADING
SCHEDULE

N/A
16. DISTRIBUTION STATEMENT rof this Report)

Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, If different from Report)

18 SUPPLEMENTARY NOTES

The findings of this report are not to be construed as an official
Department of the Navy position unless so designated by other
authorized documents.

19 KEY WORDS (Continue on reverse side if necessary and'identify by block number)

concurrency control; recovery; atomic action; deadlock;

distributed database systems; locking; serializability; timestamps;
two-phase commit; two-phase locking; transactions; reliability.

ABSTRACT (Coatinue on rever.se side if necessary and identity by block number)

An experimental software tool for simulating the behavior of distributed
algorithms is proposed. The primary motivation for developing the tool is
to study distributed database algorithms. Also, a classification of
techniques presently used for distributed database problems of concurrency
control and recovery is presented. This classification will be used to
reduce the experimentation necessary to compare the performance of
alternative algorithms.

DD jAN 73 1473 EDITION OF INOV S IS OBSOLETE Unclassified

SECURITY CLASSIFICATION OF THIS PAGE 1171rn P)nt" FPr,tedrpI)

x ~ I ItllnAlan If 4 MAl

&CURITY CLASSIFICATION OF THIS PAGt(Whog Data Enteed,-

The study and development of distributed algorithms in general and distributed
database algorithms in particular is behavior of distributed systems. Both
intuition and present-day analytical tools are inadequate to characterize
their behavior. Another barrier to understanding such algorithms is the
complexity of their interaction, due to the potential lack of synchronization
between nodes of a distributed system. Finally, it is not yet clear whatSgood$ behaviors are reasonable to expect from a distributed system. As a
result, a multitude of algorithms may exist foi solving a single problem,
but without more experience and analysis, their behavior cannot be well
understood or compared.-,

'This report describes an approach to providing the experience necessary
for understanding the behavior of these algorithms.<_

H

it

L 4

Unclass'ified
SECURITY CLASSIFICATION OF THIS PAGE(l7,en Dots Entered)

-• ii

ASTRACT

An experimental software tool for simulating the behavior of
distributed algorithms is proposed. The primary motivation for developing

the tool is to study distributed database algorithms. Also, a classifica-

tion of techniques presently used for distributed database problems of

concurrency control and recovery is presented. This classification will be

used to reduce the experimentation necessary to compare the performance of

alternative algorithms.

The study and development of distributed algorithms in general and

distributed database algorithms in particular is behavior or distributed
systems. Both intuition and present-day analytical tools are inadequate to

characterize their behavior. Another barrier to understanding such
algorithms is the complexity of their interaction# due to the potentiel

lack of synchronization between nodes of a distributed system. Finally, it
is not yet clear what "goodw behaviors are reasonable to expect from a

distributed system. As a result, a multitude of algorithms may exist for

solving a single problem, but without more experience and analysis, their
Lv behavior cannot be well understood or compared.

This report describes an approach to providing the experience neces-

sary for understanding the behavior of these algorithms.

Georgia Institute of Technology Simulation Tool for Distributed Databases

SI j 'i-- -' - u

v A

• ~~~~Chapter 1 Itouto

1.2

•! ~1.3 The Approach 3
1.4 Significance .,..

Chapter 2 Bktud.6

.j2.1 General Re ak .6
2.2 Conourrenoy b ont6ol 1

2.2.1 Concurrency ControlAlgoriths........................... 8
2.2.2 Deadlock anaement 10
2.2.3 Conflict Reesolution.. 11

2.3 Reliability in a Distributed Database 11
2.3.1Reoftua~n......... 12

2.3.2 Atormcety Sui................... 12
2.3.3 Information Reurmns.................13
2.3.4 Recovery Ptoo.....................14

2.4 Performance Sues......................14

2.5 Simulation Techniques.. 16

Chapter 3 The Simulation Tool 17
3.1 Introduction .. 17 4

3.2 The Distributed Database Model 17
3.2.1 The Comunication System Submodel 17
3.2.2 The Distributed System Submodel 18
3.2.3 The Data System Submodel 18
3.2.4 The User nterface Submodel 19

3.3 System Archntecture and Speifications........................ 19
3.3.1 Output Analysi 19

Bibliography 21

Georgia Institute of Technology Simulation Tool for Distributed Databases

vi

F••i Fligure I A Schematic of the Distributed Database System rlodeL.,s.,. 19

-Io

Vii

-1f

Ft

4 1

IGeorgia Institute of TecahnoloCy Sinulation Tool for Distributed D~atabases

Chapter 1 Introduction Page 1

CHAPTIN I

Int.oduction

The basic problem to be addressed by this research project is the

development of a methodology for analyzing and comparing distriouted

database system design alternativea. This problem is both general and

specific. In general, we may ask whether there are rules or guidelines for

choosing one database design alternative over another. For specific

databases, we may ask which design alternative works best according to the

r-equirements of the database. The approach taken addresses both questions,

in that studies will be done to determine the general guidelinus, but the

tool developed for th)~s studies will also be usable in designing specific

databases. The deaign alternatives to be addressed by the studies in this

project are the choice of the following algorithms: concurrency control,

reliability, and query processing. These algorithms have been chosen

because of their central importance to database processing and also because

a number of alternative algorithms have alread:y been developed for each

problem.

The difficulties of studying any distr..&buted database algorithms are

numerous. First, only a few of the proposed alternatives have been

implemented at any single site. Thus tAere is little experience with their

performance in general. As a result intuition about their behavior is

unreliable. This makes it very difficult even to develop reasonable

hypotheses about their behavior. Second, the behavior of a distributed

system is much more complex than the behavior of a centralized system. It

is necessary to consider not only the behavior of a single system in

isolation, but also its intepactions with the other nodes of the system.

For this reason, it can be exceptionally difficult to prove anything about

a distributed algorithm, even that it works correctly. Third, the alter-

natives designed to solve a given problem make difrerent assumptions about

the system on which they are run. They may assume different topologies,

different protocols, and different process structures. Even correctness

criteria may vary. Finally, few analytical tools for studying distributed

systems have been developed so far.

Georgia Institute of Technology Simulation Tool for Distributed Databases

-ii ii ',: --- .~ ,,-_

rage 2 Introduction Chapter I

1.2 .hgktm n
The objectives of this project are:

a development of a software tool for analyzing and studying the

design alternatives;

e application of the tool to distributed database design alter-

natives;

a development of new solutions to distributed database problems using

the results of the above study; and

a development of experimental and analytical techniques for studying

distributed algorithms in general.

The first objective of this project is the development of an experimental

tool for the study of distributed systems, especially distributed databa•e

systems. The central experimental tool will be a combination teetbed and

simulation system. It will allow an algorithm to be coded in as a module

of the system. The algorithm can then be tested in this environment. Sub-

sequently, the behavior of the algorithm can be studied with the aid of the

simulation facilities provided by the system.

The second objective is to apply the tool to a study of distributed

databases. The goal of applying this experimental tool will be to

determine how the atructure of an system relates to its expected behavior.

The assumption is that reasonable structural properties will correspond to

good (or bad) behavior in a predictable way. For example, using the alas-

sification of concurrency control mechanisms into looking algorithms and

timestamping algorithms, we may ask which is more efficient, more robust,

or more fair. This should not be taken to imply that only this clas-

sifications will be used. In fact, one part of this objective is to

determine which classifications provide the most information about

behavior.

The third objective is to use the results of the above studies to

develop new solutions to distributed database problems, where it is clear

from the previous work that existing solutions could be improved on.
The final objective is to develop experimental and analytical tech-

niques for studying distributed algorithms. New techniques to be developed

obviously can,'t be predicted, but the tool itself provides one experimental

technique for studying distributed algorithms. Also, experience with the

tool should suggest refinements. In addition, the usefulness of various

Georgia Institute of Technology Simulation Tool for Distributed Databases

Chapter I Introduotion Page 3

classifications of distributed database algorithms (e.g., BER80, BAD81,
H3181) will be tested. This testing wll suggest connections between the

classifioation of an algorithm and its performance that may be used in

analysis.

1.3 IMA22MA
The approach will include the following steps:

a development of a general model of distributed database processing;
e development of the testbed/aimu3ation model;

* validation of the correctness of the system with each design alter-

native to be tested;

a implementation of the design ulternatives for concurrency control

and reliability mechanicms as modules of the system;
e simulation experiments to collect empirical data abo.; the behavior

of the system with various deeign alternatives;
I development of hypotheses, on the basis of the experimental data,

concerning the behavior of the distributed system with various

types of designs; and
a developmeat of analytical proofs of these hypotheses if possible.

The model of distributed database processing will be based on that of Ber-

natein and Goodman [BERa8o. It will be more general in that reliability of
the comunication system will not be assumed; transaction managers and data

managers will be allowed to coomunicate with either transaction managers or
data managers; and in fact a transaction may be passed around to multiple

transaction managers for processing, as described in lR0S78].

A central decision to be made in the development of the testbed/
simulation model is the choice between a distributed simulation and a

centrelized simulation. The advantages of distributed simulation are that
the testing feature will be wore convincing if the simulation system is
itself distributed and that it will be more efficient if the communication
system is sufficiently fast. The disadvantages are increased hardware cost

and overhead the problems of dealing with time; and the need to develop the
software for it. Most of the software for a centralized simulation has

been written and tested on an existing "tioket-sales" database.

While the number of potential algorithms to be implemented seems

prohibitively large, two factors reduce the problem to manageable size:

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page k Introduction Chapter I

first, the essential parts of the algorithms are relatively small proarams,

and second, not all algorithms need to be Implemented, just those

representative of important olasses of algorithms. The plan of attack, in

the area of concurrency control, is to build on the work of Bernstein and

Goodman [BER8Q]; Badal [BAD81; and Haiao and Onsu [HSISJ. Each of these

papers contains a classification of concurrenoy control algorithms by their

structural properties (e.g., voting or looking; centralized or

decentralized). Such classifications will be used as a starting point for

analyzine the behavior of the algorithms.

For the experimental results to be of any use, the algorithms must

first be verified. Several techniques can be applied: traditional proof

techniques, mutation analysis [ACR79J, and traditional testing. Also, the

data supplied to the system describing the data processing requirements

must be realistic. Some possible sources of data for systems which are

either partially distributed or reasonable candidates for distribution are

banks (e.g., automated teller systems), airlines (ticketing systems); and

the military (e.g., personnel and inventory systems).

Some of the measures of system performance to be used in analyzing

the results are:

s Average user waiting time;

e Throughput;

S Average queue length at each node; and

a Utilization.

Other measures that need to be considered, to determine whether they are

reasonable to look at in a distributed system, are fairness, avoidance of

starvation, blocking, degree of concurrency, and so forth.

1.4Lsi~ a

The work done on this project will contribute in a number of ways to

the understanding of distributed database systems and to the methodology

for designing them. First, the testbed and simulation tool will be usable

not only for the duration of this project but will be available for

additional work on distributed database systems. Furthermore, it should be

sufficiently general to be used for other listributed systex projects at

Georgia Tech. Second, the tool will be applicable to the design of

specific distributed database systems. The use of the tool to test the

Georgia Institute of Technology Simulation Tool for Distributed Databases

_ _... _ -'

Chapter I Introduction Page 5

behaviors of various Cistributed database algorithms will serve as a

thorough test of Its c irreotness and performance. Third, the study of

design alternative: for distributed database systems, using the tool, wi.l

provide better understanding of the range of alternatives which are

reasonable for any paiticular case, and thus reduce the design problem.

Fourth, improved understanding of the behav. - of different algorithms for

conourrency control, query processing, and reliability may suggest better

algorithms. Finally, extensive empirical studies of a distributed database

system will provide exrerienoe on which to base principles of behavior that

any reasonable distributed database system ought to obey.

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 6 Background Chapter 2

CHAPTER 2

Beckground

2. 1 G*zLaraJ. 12marka
The two problems to be studied are concurrency control and

reliability. Solutions to these problems will be interdependent, since

reliability mechanisms are required to iparantee that concurrent transac-

tions appear atomic to system users in spite of site failurea. There are

also inieractions between the choice of a concurrency control algorithm and

the techniques used to provide a reliable system. For example, some

concurrency control algorithms are designed to continue functioning correc-

tly in spite of site failures. Others require system reconfiguration when

a site fails.

2.2 .Concare.ncy ContLrol
Concurrency control in a database (distributed or not) is a means of

guaranteeing correct behavior while allowing maximal concurrency. As an

example of the problems that can arise if uncontrolled concurrency is

allowed, consider a bank automated teller system. Suppose that a

customer's balance is stored redundantly at each of several locations.

Then, with uncontrolled concurrency, a customer could arrange to have with-

drawals of the entire balance initiated simultaneously at two remote sites;

but the balance after these transactions would reflect only one of the

withdrawals. This would be nice for the customer, but disastrous for the

bank.

The solution to this type of problem is to use a concurrency control

algorithm, which prevents this type of behavior. The standard criterion of

correctness in a database was developed by Eswaran, Gra), Lorie, and

Traiger in [ESW76]. Their model of a database includes entities, each of

which has a name and a value, and inerity constraints, which may be

expressed as predicates and restrict the set of values that may be taken on

by the entities in the database. For example, in the bank database, we

would require that an entity representing a balance be nonnegative and that

any two entities representing the sarie balance (perhaps at different sites

of a distributed database) be equal in value. A database state which

satisfies all of the integrity constraints is a c database state.

Georgia Institute of Tekbniology Simulation Tool for Distributed Databases

I j

Chapter 2 Backgroun,' P age':

The unit of activity on a databast is the tjrinsaotion. A transaction

consists of a set of basic database actions, usuilly reads and writes. A

consistent transaction changes a consistent database state to another

consistent database state. The database state need not be consistent while

a transaction is in progress, but it must be consistent when it terminates.

A schedule for a set of transactions is an ordered list of the

database actions specified by the transactions, preserving the order within

individual transactions. If all database transactions are consistent when

run alone, then clearly any serial schedule of transactions (i.e., a

schedule in which each transaction terminates before the next begins) will

be vonsistent. Thus in [ESW76] a database is defined to be srialkiz if

it can be transformed to a serial schedule by successively interchanging

database actions that cannot affect each other, and it is shown that any
serializable schedule is consistent. Subsequently, Stearns, Rosenkrantz,

and Lewis ROS80) have shown that serializability is not only a sufficient

but a necessary condition for consistency, if we assume "full func-

tionality" (i.e., no restrictions placed on the interpretation of the

operations in a transaction) and all entities are read before they are

written.

Concurrency control algorithms are thus used to enforce
serializability of schedules of transactions. Actually, one class of

algorithms (the timestamp algorithms) may produce schedules which are not

strictly serializable but whose effects are exactly the same as some

serializable schedule. Serializability of the schedules allowed is thus

the standard criterion of correctness of a concurrency control algorithm.

Several authors [LYN81,RIE81,GAR81] have proposed various

generalizations of serializability as an alternative criterion for correct-

ness of concurrency control algorithms. Lynch's generalization provides

for the user (or application system) to specify a set of interleavings of

actions which are correct. The set may include nonserializable as well as

serializable interleavings. Garcia-Molina proposes two levels of locking,

local end global. Local locking is used to guarantee that a sequence of

actions is atomic at a single site. Global locking is used in the usual

way for detection of concurrency conflicts. The advantage of his method is

that knowledge of the database semantics may be used to allow a non-local

transaction to release local locks as soon as its local activity is com-

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 8 Background Chapter 2

plete. For example, a transfer of money from one bank branch to another

may be considered completed as it has been determined that there is enough

money in the source branch to perform the transfer. Ries and Smith discuss

"nested transactions", in which one transaction system uses transaotiono

provided by a second transaction system. The nested transactions may be

serializea with each other in any order, not necessarily in the same order

as the calling transactions. For example, if two database transactions

request the file system to allocate space, it is not necessary to serialize

the space allocations in the same order as the database tranjactions.

2.*2.*1 Coourec Contro ~lkr.. AaLb
Bernstein and Goodman categorize concurrency control algorithms as

either twu-phase locking algorithms or as timestamping algorithms [BER80].

Two-phase looking algorithms ensure consistency by prohibiting a transac-
tion from requesting more locks if it has released any locks. Each

transaction has a "growing" phase during which it requests locks and a
"shrinking" phase during which it releases the locks it has set. Between

these two phases is a "lockpoint"; the execution behaves as if all entities

were updated at the lockpoint. Locking schemes are prone to deadlocks and

require a policy for avoiding or breaking them.

Timestamp ordering algorithms depend on assigning a unique time to

each transaction as it arrives, and guaranteeing that the effect of .aning

a group of transactions is the same as if they had been run serially in

arrival order. A transaction must not perform updates on the basis of data
which is out-of-date. That is, it must not overwrite an update created by

a later transaction. Also, it must not read data written by a later
transaction.

Centralized concurrency control algorithms are all locking schemes,

in which looks are controlled centrally and must be requested from a

designated site. One variant of this is Stonebraker's "primary copy"

scheme for INGRES [STO79], in which the site may vary from one data entity

to another. A decentralized algorithm which utilizes locking is called

"basic 2PL" by Bernstein and Goodman [BER80]. In this technique, the lock

on an entity is granted by the site at which it is stored. They also

describe a technique called "voting 2PL", which requires only that a

transaction obtain a majority of the locks for each data item it requires.

Since only one transaction at a time can have a majority, this is

Georgia Institute of Technology Simulation Tool for Distributed Databases

.. , • _-.. _ _ _.. .. . -..

Chapter 2 Background Page 9

sufficient to prevent consistency violations,

Timestamping approaches to concurrenuy control including voting
schemes, a multi-version database algorithms, and the SDD-1 protocols. '*,,

best-known voting scheme is probably Thomas' majority voting. s•l)vzithwi
[THO79] (also called the distributed voting algorithm by Garci0-PVc.,nna

[GAR78]), in which a majority of the sites must approve any transaction.
This idea has been generalized by Gifford :GIF79J to allow assignment of
any number of votes to each site, and require only that a majority of votes
be collected by a transaction. This reduces to a centralized algorithm if

one site has all the votes. As Thomas noted in [TH079], any rule will work

which requires that two conflicting transactions both get permission to

proceed from some single site.

Reed's multi-version algorithm CREE78J requires that multiple ver-

sions of each entity be maintained in the database, with each version

including the range of times for which the value is known to have applied.

Each action on the database has a time associated with it. If it is a read

and the entity has a value for some range of times including the read, then

the value is returned; if no such value exists, the range of times for some

value is increased to include the time of the read. If the action is a

write, it must not change a value which already holds for the time of the

write; if it tries to, the transaction is aborted.

The SDD-1 protocols [BER77J also utilize timestamps to guarantee

different levels of synchronization of transactions. The idea is that many

groups of transactions will require only limited synchronization with

respect to each other. To take advantage of this fact, the transactions

must be analyzed beforehand to determine the types of synchronization

required. Of course, this requires that the transactions to be used are

known beforehand. Four types of synchronization are identified. P1 synch-

ronization is purely local; no global synchronization is attempted. P2

synchronization can be used to guarantee that reads are consistent,

although they may be out-of-date. The largest local entity timestamp at

the site initiating the transaction is used as the time of the read. P3

synchronization guarantees that reads are up-to-date as of the current time

of the transaction; this is used for potentially conflicting updates. P4

synchronization is used for unanticipated transactions and for P2 or P3

transactions requiring so many entities they might be subject to star-

Georgia Institute of Technology Simulation Tool for Distributed Databases

_ _ _ _ _rz I_. 1

Page 10 Background Chapter 2

vation.

The classification into looking and timestamping algorithms refers to

the method used to prevent consistency violations. The locking algorithms

require that a transaction must reach a lookpoint, when it has exclusive

control of all data-items, before it may complete. The timestampingj

Salgorithms require that actions on data-items be performed in timestamp

order of the transactions requesting the actions. But it is also necessary

to decide what to do with transactions that never reach their lockpoints

(due to deadlo-ks) and with transactions that discover a timestamp conflict

with other active transactions.

2.2.2 Dsaa
Deadlocks may be handled either by deadlock detection or deadlock

prevention. Deadlock detection requires maintaining a graph of active

transactions. The nodes of the graph represent transactions and the arcs

represent the "waits-for" relation. Deadlock prevention requires

guaranteeing that no deadlocks ever occur.

Centralized deadlock detection could be used with a centralized lock-

ing algorithm. However, it would be extremely expensive with a

decentralized algorithm. Two methods for decentralized deadlock detection

are described in [MEN78]. One method imposes a hierarchy on the network

and detects deadlocks at the lowest possible node of the tree. This method

was designed to reduce the communications cost incurred with centralized

deadlock detection. The second method requires recursively sending

notification of new "blocking transactions" to the originatinp zie of each

transaction thus blocked. This methd was desismu to continue functioning

in a system prone to failures.

If a deadlock prevention methcd is to be used, one way of

guaranteeing that no deadlocks occur is to guarantee that locks are

assigned in the same order to all transactions for all entities referenced

at all sites. This can be done by assi•.•ing sequence numbers to transac-

tions and granting lock requests to the lowest pending sequence number.

This technique is used in Garcia-Molina's "hole list" (MCLA-h) scheme

[GAR78, GAR79]. In this scheme, instead of requiring each action on a

database entity to wait at the central site for a lock, a sequence number

is assigned to the transaction, and the action proceeds immediately to the

distributed sites. The "hole list" refers to a list of sequence numbers of

Georgia Institute of Technology Simulation Tool for Distributed Databases

aI

-ii
Chapter 2 Background Page 11

transactione the sitt need not wait for. Another techniqu, using sequence

numbers is Lelann's token-passing scheme CLEL78], in which the site with

the "right', to grant sequence numbers is the site havIng possession of a

token, which is passed around a ring. Two other loci, ng algorithms using

sequence numbers are the centralizec WAIT-DIE and WOUND-WAIT algorithms of

Rosenkrantz, Stearns, and Lewis [ROS78].

2.2.3 Couniat

Finally, with either locking or timestamping algorithms, it is neces-

sary to decide how to resolve conflicts (i.e., deadlocks, potential dead-

looks, and timestamp conflicts). This can be done by using a sequence num-

bering scheme such as the "valid numbering schemes" described in [ROS78] or

by voting, as in [TH079] and [GIF79]. Timestamps qualify as a valid num-

bering scheme. Algorithms which avoid conflicts by assigning a number or
timestamp to each transaction and then forcing each transaction to wait

until all previous transactions have executed will be classified as reyolv-

ing conflict using a numbering scheme.

2.3 1& A .asribuled DAfM
The goals of a reliability mechanism in a distributed database syster

are to guarantee that:

* the active sites can continue to function in the presence of

failure; and
Sa failed site can be restored to the system when the cause of the

failure in corrected.

The first goal, to permit the system to continue to function in the

presence of failure, requires (1) detection of the failure; (3) possible

reconfiguration of the system after the failure is detected; and (2)

preserving the atomL-ity of transactions that may be active both before and

after the failure. The second goal, restoring the failed site after the

cause of the failure is corrected, requires (1) sufficient information to

determine what the current state of the site should be; (2) a protocol for

reintroducing it into the system; and (3) possible reconfiguration of the

system after the failed site has recovered.

In this project, it will be assumed that failures are detected by

some means (e.g., as in the "local status layer" of RELNET [HAM81]). The

u Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 12 Background Chapter 2

remaining problems are reconfiguration; atomioity; information

requirements; and the post-failure protocol.

2 1n3tmn.a1

Reconfiguration may not be requir(ed if the site algorithms are writ-

ten so that the system continues to function in the srme way in rite of

failures. In many cases, however, there are *special-purpose" eiteo

(primary sites, in [ALS76] and INGRES [ST077,STO79J; spoolvrs and commit

backup processes, in SDD-1 [HAM81]) whose funot±.ns must be reassigned to

otber sites when the special-purpose site fails. The reast1gnment may be

fixed before the site failure, as in [ALS76] and [HAM813 ;r it may be
determined after the site failure (e.g., by a vote of the live sites

(GAR81]). Reconfiguration following a site recovery would then involve

reassigning a special function to the recovered site or possibly assigning

it as a backup for such a function.

2.3.2 Atomicity

A transaction is defined as a set of primitive database operations.

It is required to be an atomic unit of action, that is, either all

operations of the transaction are performed or none are. In a distributed

system, this means that if any site decides to "coumit" itself to the

transaction, then all sites must. Also, if any site decides not to perform

the transaction, then the remaining sites must agree.

Site failure raises the possibility that the failed site may never

know what decision the other sites came to. Conversely, the other sites

involved may not know what the failed site decided to do. But the

atomicity requirement means that all sites must agree on the decision, in

spite of failures.

The standard solution to this problem is the "two-phase commit"

protocol [GRA78]. In the first phase, changes to the database are made in

a reversible way. In the second phase (the "commit" phase), when it is

known that all sites making changes are agreed to make them, then changes

are made permanent. If any site decides not to make the changes, then the

transaction is aborted. The basic choices are how '.o make the changes

reversible and how to decide to make the changes permaneat.

Changes may be made reversible in two ways: by writing an UNDO log

entry before making the changes or by changing copies only until the

Georgia Institute of Technology Simulation Tool for Distributed Databases

Chapter 2 Background Page 13

decision to make the changes permanent has be made. The logging techninue

is discussed in tjRA78]. Updating of copies only is used in r.ZLT.A [11-8 .

Reed's multiversion system [RE1T8] may also be viewed aa updating only

copies until the commit is made.

The decision to make the changes permanent may be mfde by a vote of

all involved sites [GRA78,LEL81] or by reaching the "normal" or "abnormal"

end of a transaction [REE78,ROS78J. Which technique is use' -s related to

the underlying model of transaction execution. If a transaction is
executed by a "transaction manager" (SDD-1) or a "producer" (DELTA), whict.

sends a sequence of read, write, and commit commands to the other sites,

then there is a natural choice of site to initiate and count the vote. If,

however, the transaction is viewed as a process which migrates from site to

site, then it is more natural to let the site at which the transaotion

terminates (either normally or abnormally) make the decision to commit orI abort it, depending on the type of termination.

A problem with the two-phase commit protocol is that the final

decision to commit or abort a transaction may be delayed until after a

failed site has been recovered. For example, if the failed site is the

"tran3action manager" in SDD-1 or the "producer" in DELTA, then the count

of the vote would be delayed. The system can correctly wait for the site

to recove-, but the delay may be intolerable.

The alternatives are to abort the transaction immediately when a com-

ponent fails; to tolerate the delay; or to introduce a now protocol for

committing transactions. The third approach is taken in [SKE81 J, in which

sites seek a concensus on committing or aborting; and in SDD-1 [BER80], in

which only a transaction may be aborted only on a read, so that once all
update messages have been passed to the guaranteed delivery layer of the

message system, the transaction may be committed in spite of site failures.

2.3.3 InformatioA jtmaLrann=

A useful classification of the information used in restoring a failed

site to the system is given in [GAR81]. He identifies three possibilities:
no Information is used, a log is used, or "persistent messages"- are used.

If no information is used, then the current state of the failed site must

be determined from the states of thu active sites in the system. Thus

there must be enough redundancy in the system to allow determination of the

state of one site from some subset of the other sites. If a log is used,

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 14 Background Chapter 2

as in [GRA78], the failed site recovers by performing all of the missed

actions. If "persistent messages" are used. then the oommunications system

must remember all the missed actions and garetse that the failed site

receives th a [HAM81].

2.3.'4 hnealry Protnal
When a failed site recovers, it is first brought up-to-date, as

discussed in the preceding paragraph. Subsequently, it rejoins the system,

possibly with reconfiguration of the system, For example, in [ALST6J, the

site must first request to rejoin the system. This request must be trans-

mitted, either directly or through or sites, to the primary site, which

informs all sites to add the "new" cite 4•o their tables. In [LEL81], when

a node wants to rejoin the system, it munt get a checkpoint and all sub-

sequent actions to bring it up-to-date. Then it may rejoin.

2.14 Zrformanne Aj~d
To date, there has been little publishtmd work on the performance of

concurrency control algorithmns. Three major exceptions are the work of

Garuia-Molina [GART8,GAR79], Gelenbe and Sevoik (GEL78], and Bernstein and

Goodman [BER80]. Garcia-iollnats work has focussed primarily on simulating

certain algorithms. Gelenbe and Seveik have suggested a queuing network

approach to determining two measures of internal database performance (as

opposed ýo external measures such as response time and throughput). Ber-

nsteir and Goodiwan have also analyzed many concurrency control algorithms,

comparing them aecording to several internal measures. The underlying

t:iesis of the prcposed work is that the above-mentioned work can be

tignificantly extended by combining the approaches. The simulation

experiments can sug66st theorems to prove and provide exuiples of system

behavior zo explain by analytic methods. When analytic methods fail,

simulation c¢n be used to clartfyf the behavior of the algorithms. This

technique was used with success in the work on "ticket systems" discussed
in section IV.

Garcia-Molina has done extensive simulrlion of 3 algorithms (and some

variants): centralized locking, distributed voting, and Ellis' ring

algorithm. Other, significantly different algorithms not covered in his

work include Reed's multiversion algorithm, the WAIT-DIE and WOUND-WAIT
algorithms, and the SD-41 algorithms. His simulations were based on a

Georgia Institute of Technology Simulation Tool for Distributed Databases

Chapter 2 Background PgeO 15

model that allowed only updates on a fully redundant distributed database

system. Ris results show that the centralized version has lower response

tiwe for , . but vory heavy loads; lower I/O utilization, probably because

of the i-edundant I/0 required in a fully redundant system; and slightly

fewer messages per update. The crucial parameter in determining the

differeace seemed to be 1/O utilization, suggesting that less redundancy in

the database might produce more favorable results for decentralized

algor.Lthms. An important fact.' of the response time in either case is the

load, as reflpettd in the transaction interarrival time. The simulation

model used in the work priposed here would have to Include significantly

more detail thLn Uarcia-Molina's, in order to determine why a concurrency

control algorithm caused observed behavior patterns. For the sme reason,

some additional performance measures would be of interest, such as oonges-

tion at a node, blocking, restarts, etc.

Gelenbe and Sevoik have developed a quouing analysis technique for

evaluating distributed database systems. Their measures of database per-

formance are the ghba•rnaig (i.e., the degree of agreement of the sites on

the value of an entity) and the brompMaa. (i.e., the average time required

to update an entity at a site). Their techniques are illustrated In

[GEL78] on two rather special-purpose database systems but would also apply

to more general databases. The analytical technique can be used to help
validate the simulation results. The measures defined by Gelenbe and Sev-

cik apply to the internal database behavior rather than to a database

user's external view of its performance. The intention of the proposed

work is to relate the performance of the database, as seen by a user, to

its internal behavior, and to relate the internal behavior to the operation

of the concurrency control algorithm in the particular distributed database

system. This will relate the design of the distributed database to the

output of the database and not just to its internal appearance.

Bernstein and Goodman have discussed the performance of a huge

variety of concu,,rency control algorithms in [BER80]. They use four

measures which they regard to be important in the total cost of concurrency

control and which can be determined analytically from the algorithms them-

selves, These measures are: communication overhead (represented by number

of messages), local processing overhead, blocking, and restarts. The

relationship of these measures to response time and throughput depends on

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 16 Background Chapter 2

assumptions about how a distributed system behaves.

At present, such assumptions must necessarily be generalixations of

experience with single-oomputer systems, since there has been so little

experience with distributed systems. Unfortunately, it is hard ta reason
about systems with which we have had little experience. Asa reslutg many

seemingly obvious assumptions and hypoth'%ses about distributed systems say

prove wrong. The work to be described In section IV mentions two examplea

of this problem. The simulation experiments that I an proposing provide

one way to gain experience with distributed database systems.

2.5 mgaUan Ma aa
The simulation of a distributed database system can be done using

conventional simulation techniques. Such an approach was taken for the

"ticket system" work discussed below. However, primarily for reasons of

performance, the use of distributed simulation may be preferable. A number
of papers have appeared recently on this topic [BRY79,CHAT9,PEAT9]. The

primary problem with using a distributed system for simulation is the
management of simulation time when no shared variable 'clock' is available.

I

Chandy [CHAT9] has proposed a "time-exchangew system which requires each

process to maintain a time on each of its output lines, and to take the

next event from the input line with the lowest time. Peacock, Wong, and

Manning [PEA79] have extended the method of Chandy and devised other

methods as well, including a 'scaled real-time" method in which simulation
time is simply scaled real time. In the terminology of Pea•ock, Wong, and

Manning, the simulation methods most likely to be of use in this project

are the "loose event-driven' methods (because they should p~rovide the best

performance) and the "scaled real-time" method (to assLst in developing

intuition).

4

Georgia Institute of Teohnology Simulation Tool for Distributed Databases

Chapter 3 The Simulation Tool Page 17

CHAPTIR 3

The S31n ation Tool

=3.1 Ja~lcgdWW4

The objeotives of this project are (1) to develop an experimental

software tool for testina and simulating distributed systems; (2) to apply
the tool to distributed database systems; (3) to develop new solutions to

distributed database problems using the results jf the experiments; and (4i)
to develop both experimental and analytical techniques foi studying

distributed algorithms in general.

The first two objectives require development of a model of
distributed database systems. This model will of neuessity include a sub-

model of a distributed system. The first objective - that the tool be

applicable to distributed systems in general - requires that the aubmodel.
be separable from the model and that it be sufficiently general to allow

study of a wide range of distributed system problems. Problems 1.kely to

be addressed at Georgia Teoh (in addition to database problems) are

distributed compilation and distributed resource allocation.

3.2 XZ& DUa••WtMd Da~aaa aosaL

There are four parts to the distributed database model: the com-
munication system submodel the distributed system submodel, the data

system aubmodel, and the user interface submodc-.

3.2.1 .ya AUt A Dub-a

In the communication system submodel, it i.ll be assumed that point-

to-point communication can be described by the following parameters:

e the delay time distribution function;

a the mean delay time;

a the variance in delay time (if applicable); and

a the probability that a message ib lost.

These par meters may change dynamically, to simulate line failures while i
the sysiem is running. The communication system submodel simulates the

data link and physical layers of the ISO reference model of open systems

interconnection [IS081].

Georgia Institute of Technology Simulation Tool for Distributed Databases

L - : -•.- -" - II.. . .-,'i ...

page 18 Tiae Simulation Tool Chapter 3

The distributed system k 4bzodel 4ill contain any k'squired routing ard

irror rocove'v techniquos. It %fulales tha tranoport ana nutwork layerm

of the ISO -efeeenoe iaod. ro.1-1 n•!iy top*-1o0e. 'W-o be testek' (e.g., stfir

tree, and loop), .che routing algorithms should be trivial. Several. star-

dard ones can be supplied as part of the software too).. The distributed

system submodel will alsc contain the charact,'ristioa of the aystem nodes.

These will include the following darameter&:

a 'he node st(,p time;

a the access time to secondary memory;

e the node memory size; ani

a the 3econdary memory size.

3.2.3 MaDI vtes AVd;

F The data system sub3odW will cntain data managers" and the user

i.nterface submode. will contain "t~ransaoti.on managers", as in the Bernstein

.I ~and Goodman model of distributed ds'atabase systems [BER8O]. Operations per-

• formed by the data system submodel are:

a read a data granule (item, record, page, etc.);

a write a data granule;

e lock a data granule;

e unlock a data granule;

e read a timestamp for a data granule;

a set a tie.bt'a-p for a data granule;

e commit a data granule.

The definition of data granule is similar to the definition of Ries and

Stonebraker [.IE77]. It specifies the smallest unit of data that can be

looked and unl %: "for concurrency,control), read and written (for query

processing), or written to secure storage (for reliability). To permit

study of algorithms in which the transaction managers do not know where

data may be stored -- only the data managers know where it is -- the data

managers will be allowed to communicate with each other. To permit study

of algorithms assuming that transactions may bt passed from site to site,

the transaction managers will also be allowed to communicate.

Georgia Institute of Technology Simuiation Tool for Distributed Databases

Chapter 3 The Simulation Tool Page 19

3.2.4 T"e Uaer Itrace AUkR

The user interface submodel will process the transactions. Transac-

tions are identified by special delimiting statements at the beginning and

end. The statements inside a transaction may be any sequence of data
manager operations.

Node A Node B

User < --------- >User User < ---------->User
Interface Interface

A A

I I
V V

Database <----->Data Data < --------- >Database
Subsystem Subsystem

I I
v v

Distributed Distributed
Subsystem Subsystem

I I
v v

Communication< ---- >Communication
Subsystem Subsystem

Figure 1. A Schematic of the Distributed Database System Model

3.3 System Architecure an= Snecifications
The proposed experimental tool will contain a module corresponding to

each of the submodels discussed in the preceding section. Parameters may
be specified independently for each module and algorithms may be plugged
into the appropriate module.

3.3.1 Output An~vls
In addition, the results of the simulation must be tabulated. To

accomplish this purpose, each system action (i.e., message or access to a
database) will be logged. The log will be used to compute the following
basic measures:

a expected response time;
e throughput;
a utilization; and
a queue length at each node.

Expected response time, throughput, and queue lengths can be computed on

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 20 The Simulation Tool Chapter 31

the basis of the user interface module output. Utilization must be com-
puted from information recorded by the communication system, distributed
system, and data system modules.

Secondary measures whose relationship to the primary measures will be i
of interest are:

* number of messages;I
a number of bits sents
@ number of errors in transmission; HI* number of nodes (dispersion) required by a transaction or query;
a number of nodes actually used in responding to a transaction orii ~query;
* local procepsing overhead; and
* 1/0 time.

[2ri nttt fTchooySmlto olfo itiue aaae

Page 21

BIBLIOGRAPHY

[ACR79] Acree, A. T., T. A. Budd, R. A. DeMillo, R. J. Lipton, F. G.

Sayward. "Mutation analysis". Technical Report GIT-ICS-79/08.

[ALS76] Alsberg, P. A., and J. D. Day. "A principle for resilient sharing
of distributed resources." Proceedings of the 2nd International
Conference on Software Engineering, San Francisco (1976), 562-570.

[BAD79] Badal, D. Z. "On efficient monitoring of database assertions in
distributed databases". Proceedings of the 4th Berkeley Conference
on Distributed Data Management and Computer Networks (August,
1979). 125-135.

[BAD78] Badal, D. Z., and Popek, G. J. "A proposal for distributed
concurrency control for partially redundant distributed data base
systems". Proceedings of the 3rd Berkeley Workshop on Distributed
Data Management and Computer Networks (1978). 273-285.

[BAD81] Badal, D. Z. "Concurrency control overhead or a closer look at
blocking vs. nonblocking concurrency control mechanisms".
Proceedings of the 5th Berkeley Conference on Distributed Data
Management and Computer Networks (June 1981).

[BER77) Bernstein, P. A., Shipman, D. W., Rothnie, J. B., and Goodman, N.
"Concurrency control in a system for distributed databases (SDD-
1)". ACM Transactions on Database Systems 5, 1 (March 1980), 18-51.

[BER80] Bernstein, P. A., and Goodman, N. "Fundamental algorithms for
concurrency control in distributed database systems". CCA Technical
Report (Feb. 1980).

[BRY79] Bryant, R. E. "Simulation on a distributed system". Proceedings of
the First International Conference on Distributed Systems, (Oct.1979)t 544-552.

[CHA79] Chandy, K. M., Holmes, V., and Misra J. "Distributed simulation of
networks". Computer Networks 3, 2 (1979). 105-83.

[ELL77] Ellis, C. A. "A robust algorithm for updating duplicate databases".
Proceedings of the 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks (1977). 146-158.

[EPS78] Epstein, R., M. Stonebraker, and E. Wong. "Distributed query
processing in a relational data base system". Proceedings of the
ACM-SIGMOD International Conference on the Management of Data (June
1978). 169-180.

[EPS80] Epstein, R., and M. Stonebraker. "Analysis of distributed data base
processing strategies". Proceedings of the Sixth International Con-
ference on Very Large Data Bases (1980). 92-101.

Georgia Institute of Technology Simulation Tool for Distributed Databases

'I.

Page 22

[ESW76] Eswaran, K. P., Gray, J. N., Lorne, R. A., and Traiger, I. L. "On
the notions of consistency and predicate looks in a database
system". Comm. ACM 19, 11 (Nov. 1976), 624-633.

[FISRO] Fischer, M. J., Griffeth, N. D., and Lynch, N. A. "Optim&J
placement of resources in a distributed network". To appear in
Proceedings of the Second International Symposium on DistributedComputer Systems (April, 1980).

[GAR78] Garcia-Molina, H. ,Performance comparison of two update algorithms
for distributed databases". Proceedings of the 3rd Berkeley Con-
ference on Distributed Data Management and Computer Networks
(1978). 108-89.

[GARBOA] Garcia-Molina, H. "Reliability issues for completely replicated
distributed databases". Technical Report 266, Department of EECS,
Princeton University (April, 1980).

[GAR8OB] Garcia-Molina, H., and Wiederhold, 0. "Read-only transactions in a
distributed database". Technical Report 267, Department of EECS,
Princeton University (April, 1980).

[GAR79) Garcia-Molina, H. "Performance comparison of update algorithms for
distributed databases". Progress Report 8 (February, 1979).

[GAR81] Garcia-Molina, H. "Elections in a distributed computing system".
Panel discussion, IEEE Symposium on Reliability in Distributed
Software and Database Systems (July 1981).

[GRA78] Gray, J. N. "Operating systems: an advanced course", ed. by R.
Bayer, R. M. Graham, and G. Seegmuller. Springer-Verlag, New York,
1978, 393-481.

[GRD80] Gardarin, G, and Chu, W. W. "A distributed control algorithm for
reliably and consistently updating replicated databases". IEEE
Transactions on Computers C-29, 12 (Dec. 1980). 1060-1067.

[GEL78] Gelenbe, E., and Sevoik, K. "Analysis of update synchronization for
multiple copy data-bases". Proceedings of the 3rd Berkeley Con-
fer'ence on Distributed Data Management and Computer Networks
(1978). 69-90.

[GIF79] Gifford, D. K. "Weighted voting for replicated data". Xerox Palo
Alto Research Center Technical Report CSL-79-14 (Sept. 1979).

[HAMBO] Hammer, M. and D. Shipman. "Reliability mechanisms for SDD-1: a
system for distributed databases". ACM Transactions on Database
Systems 5, 4 (Dec. 1980), 431-466.

[HEV78] Hevner, A. R., and S. B. Yao. "Query processing on a distributed
database". Proceedings of the Third Berkeley Workshop on
Distributed Data Management and Computer Networks (August 1978).
91-107.

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 23

[H5181] Hsiao, D. K., and T. M. Ozsu. "A survey of conc.rrency control
mechanisms for' centralized and distributed databases." Technical
Report OSU-CI.3RC-TR-81-1 (February 1981).

[IS081] ISO/TC97/srlf "Data processing - open systems interconnection -
basic reft.•, , model". Computer Networks 5, 2 (April 1981). 81-88.

[KIK76] Kimbleton, S. R., and Schneider, G. M. "Computer Communication
Networks: Approaches, Objectives, and Performance Considerations".
ACM Computing Surveys 7,3 (1976). 129-173.

[LAM76] Lamport, L. "Towards a theory of correctness for multi-user data

base systems". MCA Technical Report CA-7610-0712 '976).

[LAM78] Lamport, L. "Time, clocks, and the ordering of events in a
distributed system". Comm. ACM 21, 7 (July 1978). 558-565.

[LAM79] Lampson, B. W., and H. E. Sturgis. "Crash recovery in a distributeddata storage system." To appear in CACM.

[LEL78] Lelann, G. "Algorithms for distributed data-sharing systems which
use tickets". Proceedings of the 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks (1978). 259-272.

[LEL81] Le Lann, G. "A distributed system for real-time transaction proces-
sing." Proceedings of the 14th HICSS Conference, Hawaii, USA (Jan.,
1981).

[LIN79] Lindsay, B. G., et. al. "Notes on distributed databases". IBM [1
Research Report RJ2571 (July 1979).

[MEN78] Menasce, D. A., and Muntz, R. R. "Locking and deadlock detection in '1
distributed databases". Proceedingo of the 3rd Berkeley Workshop on
Distributed Data Management and Computer Networks (1978). 215-232.

[MEN8OJ Menasce, D. A., Popek, G. J., and Muntz, R. R. "A locking protocol
for resource coordination in distributed databases". ACM Transac-
tions on Database Systems 5, 2 (June 1980). 103-138.

[PA179] Paik, I.-S., and C. Delobel. "A strategy for optimizing the
distributed query processing". Proc-adings of the Fifth Inter-
national Conference on Very Large Datki Bases, 1979. 686-698.

[PWM79] Peacock, J. K., Wong, J. w., and Manning, E. G. "Distributedsimulation using a network of processors". Computer Networks 3, 1
(1979). 44-56.

[REE78] Reed, D. P. "Naming and synchronization in a decentralized computer
system". Ph.D. Thesis, MIT, Department of EECS (Sept. 1978).

[RIE81] Ries, D. R. and G. C. Smith. "Nested transactions in distributed
systems". Proceedings of the IEEE Symposium on Reliability in
Distributed Software and Database Systems (July, 1981), 117-123.

Georgia Institute of Technology Simulation Tool for Distributed Databases

Page 24

(RoS781 Rosenkrantz, D. M., Stearns, R. B., and Lewis, P. M. "System level
concurrency control for distributed database systems". ACM Transac-
tions on Database Systems 3, 2 (1978). 178-198.

[H0S80] Rosenkrantz, D. M., Stearns, R. E., and Lewis, P. M. "Consistency
and serializability in concurrent database systems". SUNY at Albany i
Dept. of Computer Science Technical Report 80-12 (August 1980). i

[ROT80] Rothnie, J. B. et. al. "Introduction to a system for distributed
databases (SDD-1). ACM Transactions on Database Systems 5,1 (1980).
1-17.

[ROT77] Rothnie, J. B., and Goodman, N. "A survey of research and develop-

ment in distributed database management". Proceedings of the 3rd
International Conference on Very Large Databases (1977).

[SCH78] Schapiro, R. M., and R. E. Millstein. "Failure recovery in a
distributed data base system." Proceedings of the 4th International
Conference on Very Large Databases (1978), 66-70.

[SKE81] Skeen, D. "A decentralized termination protocol". Proceedings of
the IEEE Symposium on Reliability in Distributed Software and
Database Systems (July, 1981), 27-32.

[STE81] Stearns, R. E., and D. J. Rosenkrantz. "Distributed database
concurrency controls using before-values." Technical Report 81-1
(February 1981).

[ST077] Stonebraker, M., and Neuhold, E. "A distributed data base version
of INGRES". Proceedings of the Second Berkeley Workshop on
Distributed Data Management and Computer Networks. May 1977, 19-36.

[ST079] Stonebraker, M. "Concurrency control and consistency of multiple
copies of data in distributed INGRES". IEEE Trans. Software
Engineering SE-5, 3 (May 1979). 188-194.

[TH079] Thomas, R. H. "A majority consensus approach to concurrency control
for multiple copy databases". ACM Transactions on Databases 4, 2
(June 1979).

[TOA79] Toan, N. G. "A unified method for query decomposition and shared
information updating in distributed systems". Proceedings of the
Fifth International Conference on Very Large Data Bases. 1979, 679-
685.

[WON77J Wong, E. "Retrieving dispersed data from SDD-1: a system for
distributed databases". Proceedings of the Second Berkeley Workshop
on Distributed Data Management and Computer Networks (May 1977).
271-235.

[YOU79] Youssefi, K. and E. Wong. "Query processing in a relational
database management system." Proceedings of the Fifth International
Conference on Very Large Data Bases. 1979, 409-417.

Georgia Institute of Technology Simulation Tool for Distributed Databases

